[image: Macintosh HD:Users:rux:Dropbox:af_work:HAV:UnionVMS:Design:GraphicAssets:logo_big-01.png]
UnionVms
Developing new Proxy Modules

Table of contents
Document history	3
Intended readers	4
Purpose of the Proxy module	4
Developing a proxy module	4
Generating proxy module from archetype	4
Package overview	5
Handle messages (message package)	5
Proxy bean package	5
The mapper package	6
Mock package	6
The port initiator class	6
Start developing a Proxy module	6
Communicating with the proxy module	7
Responding to the main module	8

	Author
	Changes
	Date

	Joakim Johansson
	Created document
	2016-03-08

	Joakim Johansson
	First draft completed
	2016-03-23

[bookmark: _Toc446512385]Document history

[bookmark: _Toc446512386]Intended readers
This document is intended for developers wanting to develop a new proxy module that integrates to the UnionVms system. The text assumes that you as a reader is comfortable with coding and understanding Maven and the JavaEE technology.

This document can also be used as a generic description of the plugin technology for UnionVms but if the reader has no experience regarding JavaEE and Maven some parts can be hard to understand.
[bookmark: _Toc446512387]Purpose of the Proxy module
The sole purpose of the proxy module is to act as a proxy between a main module and a webservice. The proxy module should map the interface from the modules data source contract (Read more about this in the “Developing_New_Main_Module.docx”). The contract on the modules services are well defined and the proxy acts like a mapper between the extrernal webservice and Module
External webservice
Proxy module
Main module

[bookmark: _Toc446512388]Developing a proxy module

[bookmark: _Toc446512389]Generating proxy module from archetype
The proxy module in already defined in a Maven Archetype located in the SVN repository at [/unionvms-maven/archetypes/raw-archetypes/unionvms-proxy-archetype]. To create a new proxyproject from the archetype do the following.

If you don´t have access to a public nexus/mvn repo with this archetype you can release it locally and create your modules from this archetype.

1. In the archetype root, open cmd and type [mvn archetype:create-from-project]
2. cd into target\generated-sources\archetype (from the archetype root)
3. Type [mvn install]

Now your archetype is released to your local .m2 repository

To create a project from archetype do as follows

1. Create a new folder where you want the project to be
2. open cmd and cd to that folder
3. type [mvn archetype:generate -DarchetypeCatalog=local]
4. You will be presented with options from your local artifact repo. Chose the one that have the namespace "eu.europa.ec.fisheries.uvms.component:component-archetype"
5. Define value for property 'groupId': : eu.europa.ec.fisheries.uvms.proxy.YOUR_COMPONENT_NAME
6. Define value for property 'artifactId': : YOUR_COMPONENT_NAME
7. Define value for property 'version': 1.0-SNAPSHOT: : LEAVE_THIS_EMPTY (Just hit ENTER)
8. Define value for property 'package': eu.europa.ec.fisheries.uvms.proxyYOUR_COMPONENT_NAME: : eu.europa.ec.fisheries.uvms.YOUR_COMPONENT_NAME
9. Select Y and Enter and you’re done!

Open the generated component in your ide and mvn clean build to ensure that the component is correctly configured

[bookmark: _Toc446512390]Package overview
The generated artifact contains all a developer needs to start developing the proxy module.

[bookmark: _Toc446512391][image: \\hav.havochvatten.se\hav\root\users\jojoha\Desktop\FOLDERS\Pictures\proxyPackageJPG.JPG]Handle messages (message package)
All messages between the main module and the proxy module are sent through JMS. All messages sent to the Proxy module is handled in the ProxyMessageReciever.java class. The ProxyMessageReciever.java class is an MDB that listens to the specified queue configured in the Constants.java class.

When returning a message back to the sender the ProxyMessageSender.java class is used. This class has several methods implemented to best fit you needs. Look in the Javadoc in the .java file for more information.
[bookmark: _Toc446512392]Proxy bean package
All logic when sending and receiving data to and from an external webservice should be implemented in the ClientProxyBean.java class. The stubbs are built for a SOAP message with a PortType implementation. All DTOs and logic are mocked and the mocked client, dtos etc can be found in the mock package.

In this class the developer can build up whatever he or she wants as a client. Some project may want to build an external JAXB client and include that as a dependency in the POM and then implement the web service interface. The developer can also create a REST interface or client. The developer has totally free hands in these classes.
All beans with business logic should end up in this package.
[bookmark: _Toc446512393]The mapper package
The mapper package includes two classes out of the box. Of course more can be added but the initial two mappers are there for a reason. RequestMapper.java is intended to map the incoming objects from the requesting module and map them to the web service object on the outgoing side.
Main module
Proxy module
External webservice
Request (Incoming object)
Map to outgoing object in RequestMapper
Request (Outgoing request)

The same applies for the ResponseMapper.java class. The difference is that the mapper maps in the opposite directionMain module
Proxy module
External webservice
Response (Returning object)
Map to returning object in ResponseMapper
Response (Incoming response)

It is important that the developer tries to use the convention proposed in this document regarding the naming of the mapper. This is because all other modules uses Response and Request in the naming and the same logic applies for all those mappers throughout the all types of modules.
[bookmark: _Toc446512394]Mock package
This package and content are intended to be completely replaced or removed as it only acts as a mocking interface with DTOs SOAP port types etc.
[bookmark: _Toc446512395]The port initiator class
This class is used as a onetime initiation of a SOAP port type. The intention of this class is to act as a singleton for initiation of web service connections. This is of course optional but can be used and is a part of the mocked archetype.
[bookmark: _Toc446512396]Start developing a Proxy module
The first thing to decide is what the proxy module should achieve and what module it should communicate with. If you want to use the proxy module as a connection to a database this is NOT the kind of module to use. Instead use the Database module.
[bookmark: _Toc446512397]Communicating with the proxy module
All communication between the main module and the proxy module is achieved through JMS. To ease the integration a well-defined contract is needed. This contract or interface is provided by the main module (see the document “initial reading.docx” , the model section). The contract that is to be used in the proxy module is the DataSourceService (See the document “Devloping_New _Main_Module.docx” the model section).

The first step to integrate the main modules model is to add that import in the service EJB projects .pom file in proxy project.
For one of the proxy projects for the vessel module that import looks like below.

 <dependency>
 <groupId>eu.europa.ec.fisheries.uvms.asset</groupId>
 <artifactId>asset-model</artifactId>
 <version>${asset.model.version}</version>
 <type>jar</type>
 </dependency>

All main modules should have the mappers for the request and response objects to and from the main module already implemented. So the first thing is to implement the data source method you want to implement in the proxy module from the defined methods in the model package. This is done in the ProxyMessageReciever.java class.
All Main modules always inherit a base method that defines the method signature to handle in all modules that implements that interface. In the ProxyMessageReciever (hereafter called MDB) you first have to unmarshall the incoming message from the JMS queue. In the VesselProxy module this is done by unmarshalling the AssetDataSourceRequest. If it has been another module the Object would be called “AnothermoduleDataSourceRequest”. The JAXBMarshaller is always a part of the Main modules model package.

AssetDataSourceRequest request = JAXBMarshaller.unmarshallTextMessage(textMessage, AssetDataSourceRequest.class);

From this “BaseRequest” we can decide what method the caller wants to invoke.
In the proxy module for the code looks as follows. The method is simply an enumeration that we can do a switch case on.

switch (request.getMethod()) {
 case GET:
 GetAssetRequest getRequest = JAXBMarshaller.unmarshallTextMessage(textMessage, GetAssetRequest.class);
 AssetId vesselId = getRequest.getId();
 getVessel(textMessage, vesselId.getType(), vesselId.getValue());
 break;
 case PING:
 case CREATE:
 case DELETE:
 case GROUP_CREATE:
 case GROUP_DELETE:
 case GROUP_GET:
 case GROUP_LIST:
 case GROUP_UPDATE:
 case HISTORY_GET:
 case HISTORY_LIST:
 case LIST:
 case LIST_GET_BY_GROUP:
 case UPDATE:
 case UPSERT:
 default:
 errorEvent.fire(new ProxyResponse(message, "Method " + request.getMethod().name() + " not implemented!"));
 LOG.error("[Error, method {} not implemented.]", request.getMethod().name());
 throw new VesselProxyException("Method " + request.getMethod().name() + " not implemented!");
 }
We can simply choose what methods we want to implement from the interface and simply return an error on all other non-implemented methods instantly to the requesting module.

The next step in parsing the message is to extract the actual message from the request. In the previous step we only decided what method we wanted to use. If we also want the object that we know is a part of that message we must parse it. In the example above we must know that the method “GET” should deliver an Object GetAssetRequest.

The GetAssetRequest is unmarshalled with the help of the JAXBMarshaller provided in the main modules model.

GetAssetRequest getRequest = JAXBMarshaller.unmarshallTextMessage(textMessage, GetAssetRequest.class);

As you probably noticed the “AssetDataSourceRequest” and “GetAssetRequest” uses the same unmarshaller as if they had the same root level when parsing. A request always inherits from a “Base request”. So the GetAssetRequest inherits from the AssetDataSourceRequest. All request objects should do the same in the requests for all modules in all requests.

[bookmark: _Toc446512398]Responding to the main module
After the request is unmarshalled it is up to the developer to implement the logic that he or she wants to apply. When the logic is processed it is time to return the response to the main module. Then mapping to the response object should already be implemented in the imported model jar from the module. Communication via the JMS queue is always done with the jms TextMessage object. In the request that object will already be used but it is important that the developer uses that object in the response because the module will try to unparse a string value in the TextMessage object (getText()).

For each request, for example “GetAssetRequest” there is alwawys a object with the same name but with the response ending in the name. So for “GetVesselRequest” there is a object named “GetVesselResponse”. For that response there should be a mapper already implemented in a datasource mapper in the imported model.jar.
All mappers should be static classes so it should be easy for the developer to find the appropriate method without the need to instantiate the mapper classes.

The mapper should return a String that is a marshalled objects in an XML representation of the returning Object. See more about this in the chapter “Sending messages on the JMS queue” in the document “Initial reading.“

When the object has gone through JAXB processing and transformation to XML the marshalled object is set as the payload in the TextMessage object. When responding the ProxyMessageSender.java class should be used. The following 2 subjects are VERY important when returning a JMS message using the ProxyMessageSender.

· ReplyQueue
· The Reply queue should be the JMSReplyTo in the TextMesage object request received in the proxy module.
· JMSCorrelationId
· The correlationIs should be the JMSMessageId in the TextMesage object request received in the proxy module.

The reply queue is the queue that the requesting module decides it wants the answer to.

The correlation id is the id that the requesting module will listen to when waiting for the response from the proxy module. When the JMS message is initially created a JMS id is automatically created and sent with the message. That id is then used to verify that the response is correlating with the correct request.

Havs- och vattenmyndigheten - Gullbergs Strandgata 15, Box 11 930, 404 39 Göteborg. Tel: 010-698 60 00
image2.jpeg
- @gproxy-service
50 SorcePacages
[e europa.ec sheris avms.proxy
[besn
Clenproysean v
& [constant
B constantsova
L8 entty
& excepton
Ee——
&8 mapper

[wodoatajava

(8] vodotojava
(8 Modportrypeava
(8] odRequest ava

) ModResponse ava

[dlentprocyava

L[] Portntitor java

[TestPackages

[Other Sources
I

image1.png

image3.png
union VMS

